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Abstract. While there have been numerous reports of short-term transistor operation at 500 °C or 

above, these devices have previously not demonstrated sufficient long-term operational durability at 

500 °C to be considered viable for most envisioned applications. This paper reports the 

development of SiC field effect transistors capable of long-term electrical operation at 500 °C. A 

6H-SiC MESFET was packaged and subjected to continuous electrical operation while residing in a 

500 °C oven in oxidizing air atmosphere for over 2400 hours. The transistor gain, saturation current 

(IDSS), and on-resistance (RDS) changed by less than 20% from initial values throughout the duration 

of the biased 500 °C test. Another high-temperature packaged 6H-SiC MESFET was employed to 

form a simple one-stage high-temperature low-frequency voltage amplifier. This single-stage 

common-source amplifier demonstrated stable continuous electrical operation (negligible changes to 

gain and operating biases) for over 600 hours while residing in a 500 °C air ambient oven. In both 

cases, increased leakage from annealing of the Schottky gate-to-channel diode was the dominant 

transistor degradation mechanism that limited the duration of 500 °C electrical operation.  

Introduction 

As the reliable operating temperature envelope of integrated silicon electronics has been expanded 

from 125 °C to temperatures above 200 °C, these electronics have found beneficial use in 

aerospace, automotive, industrial, and energy production systems [1]. Further extension of the 

reliable operational envelope of semiconductor electronics above 300 °C is also expected to offer 

additional benefits to these industries, particularly in aerospace combustion engine applications 

where temperatures can approach 600 °C. The emergence of wide bandgap semiconductors, 

including silicon carbide (SiC), diamond, and gallium nitride (GaN), has enabled short-term (i.e., 

less than a few hours) electrical device demonstrations at ambient temperatures from 500 °C to 

650 °C. However, these devices have previously not demonstrated sufficient long-term electronic 

durability to be considered viable for most envisioned applications at these high temperatures.  

In order to begin meeting the needs of most high-temperature applications, a wide bandgap 

transistor technology must first demonstrate that it can achieve stable, long-term electrical operation 

at high temperature without significant changes in electrical operating parameters. This paper 

reports on the fabrication and testing of a 6H-SiC metal-semiconductor field-effect transistor 

(MESFET) and single-stage amplifier that respectively achieved over 2400 and 600 hours of 

continuous electrical operation in 500 °C air ambient with less than 20% change in electrical 

parameters.  
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Experimental 

Small-signal 6H-SiC epitaxial-channel MESFET’s 

with nitrogen-implanted source-drain contact 

regions were fabricated starting from 

commercially purchased substrates with 

customized epilayers. Fig. 1 shows a simplified 

schematic cross-section of the MESFET device 

structure. For 500 °C durability, the fabrication 

process features multiple levels of high 

temperature metallization (Ti/TaSi/Pt stack [2]) 

for durable electrical contacts (ohmic and 

Schottky) and dielectric passivation (SiO2 and 

Si3N4) aimed at preventing contamination 

(particularly oxygen) from reaching electrically 

sensitive interfaces. MESFET fabrication process 

details as well as initial durability testing (up to 

500 hours at 500 °C) were previously described in [3]. Due to a processing error (described in [3]), 

the gate fingers only spanned about 95% of the MESFET channel, which resulted in a small 

parasitic shunt source-to-drain current path (through the ~ 5% of the channel uncovered by the gate 

finger) that prevented complete transistor pinch-off. 

A few MESFET chips were packaged for prolonged high temperature testing using a ceramic 

substrate and Au-thick-film metallization based high temperature packaging approach described in 

[4]. The chip packages were in turn mounted on a simple ceramic-based circuit board with 10 mil 

diameter Au wire leads attached to Au-thick-film patterned interconnect traces. Prolonged 500 °C 

electrical testing was carried out with boards (including SiC devices) residing in a temperature-

controlled bench-top oven in air ambient, with the Au wire leads running outside the oven to the 

electrical test instruments (via terminal strip connection to conventional instrument cables). The 

transistor source terminals were grounded for all electrical measurements. One circuit board was 

assembled into a simple common-source amplifier stage with a SiC MESFET and epitaxial SiC 

resistors. Far more comprehensive descriptions of the amplifier circuit, components, packaging, and 

initial electrical testing (during unbiased 500 °C heat soak up to 432 hours) are available in [4]. 

Results 

Fig. 2 displays the measured 500 °C drain current vs. voltage characteristics of the discrete 6H-SiC 

MESFET Device #1 at the start of the test (thin darker lines) and following 2457 hours (thick lighter 

lines) of continuous 500 °C 60 Hz curve tracer bias testing. Fig. 3 shows the change in relevant 

500 °C transistor electrical parameters throughout the 500 °C bias testing. With the exception of 

gate leakage, all transistor parameters plotted in Fig. 3 exhibit less than 20% change over the course 

of the 2457 hours of 500 °C electrical testing. The device did not exhibit significant looping or 

threshold voltage (VT) hysteresis despite prolonged application and removal of negative substrate 

bias during testing and a thermal cycle to room temperature [3]. 

Both Fig. 2 and Fig. 3 evidence that increased leakage current from the reverse-biased Schottky 

gate-to-channel diode is the dominant device degradation mechanism. For example, all drain current 

seen in Fig. 2 at drain bias VD = 0 V (also plotted as “Gate Leakage” in Fig. 3) must arise from gate-

to-channel diode leakage as increasing negative (reverse) bias is applied to the gate terminal (VG = 0 

V to -20 V in -2V steps), due to the fact that drain-to-source current flow through the channel is 

zero with VD = 0 V. The maximum leakage current (which occurs for the largest gate bias step of 

VG = -20 V) is clearly much higher for the measured 2457-hour characteristics at all drain voltages.  

The addition of this increased gate leakage current clearly worsens transistor turn-off and output 

conductance (Fig. 2) that are already non-optimal due to the parasitic shunt current path mentioned  

 
Fig. 1. Simplified schematic cross-section 

of 6H-SiC MESFET [3]. 
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in the previous section. As the increasing gate leakage current becomes a larger percentage of the 

overall drain current, transistor gain (i.e., ∆ID/∆VG) also degrades. It is important to note that 

channel resistance (RDS) does not degrade, indicating that no significant degradation of the ohmic 

contacts and packaging connections occurred. 

Figs. 4, 5, and 6 briefly summarize the results of the simple voltage amplifier stage board 

constructed using a second 6H-SiC MESFET (Device #2). The amplifier board was subjected to 

656 hours of unbiased 500 °C heat soaking prior to initiation of 500 °C continuous electrical 

operation. Fig. 4 shows the circuit schematic with the dotted box showing the parts of the circuit on 

the board tested in the 500 °C oven. For this initial low-frequency demonstration, the amplifier 

output wire was connected via RG-58 BNC cable directly into a 1 M-ohm AC-coupled digitizing 

oscilloscope input, and an external (room temperature) coupling capacitor was also required at the  

 

 

Fig. 2. Packaged 6H-SiC MESFET I-V 

characteristics measured at beginning and 

end of prolonged curve-tracer biasing at 

500 °C in air. Gate steps are -2V starting 

from top trace of VG = 0 V, and VSubstrate = -

20 V.  

 

Fig. 3. Measured electrical parameters of 6H-

SiC MESFET vs. biased operating time at 

500 °C. IDSS and Gain are measured at VDS = 

20 V, while RDS and Gate Leakage are 

measured at VDS = 0 V. VSubtrate  = -20 V. 

 

Fig. 4. Schematic of amplifier stage 

tested at 500 °C [4]. VDD = 120 V, VGate 

Bias = -9 V, VSubstrate = -20 V, Cext = 

0.47 µF, RG = 150 kΩ, and RD = 340 

kΩ. 

 
Fig. 5. Sine wave input (1 V peak-to-peak) and 

output (7 V peak-to-peak) waveforms recorded 

during the 430th hour of amplifier stage electric 

al operation at 500 °C. 
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amplifier input as the 500 °C on-board capacitor 

was too small to support low-frequency (~100 Hz) 

operation [4]. Fig. 5 shows the sine wave input 

and output voltage waveforms measured in the 

430th hour of continuous 500 °C electrical 

operation (in addition to 656 hours of unbiased 

500 °C heat soak). Circuit power supply biases 

were held constant throughout the 500 °C 

electrical test duration. Fig. 6 shows measured 

voltage gain vs. frequency performance after 

various periods of continuous electrical operation 

at 500 °C. The amplifier gain remained stable 

(within 20% of original value) for over 600 hours 

of continuous 500 °C electrical operation (over 

1300 hours total soak time at 500 °C). Between 

668 and 1300 hours of electrically biased test 

time, a severe degradation in amplifier gain is 

observed. Curve-tracer characterization of 

MESFET Device #2 recorded at the beginning 

and end the 500 °C testing exhibited gate-leakage-

induced I-V degradation qualitatively similar to 

the degradation illustrated in Fig. 2 for Device #1.  

Discussion and Summary 

The primary mechanism limiting the duration of stable 500 °C electrical operation of the 6H-SiC 

MESFET was the increased current leakage from the transistor’s Schottky gate-to-channel junction. 

The increased gate leakage observed with 500 °C anneal time is generally consistent with previously 

observed behavior wherein this same metal-semiconductor interface gradually changed from 

Schottky to ohmic behavior with thermal annealing time [2]. Such gate leakage degradation should 

be greatly reduced via the fabrication of Junction Field Effect Transistors (JFET’s) that use SiC pn 

junctions as gates instead of metal-semiconductor junction gates. Therefore, fabrication of similar 

6H-SiC JFET’s has been initiated with the goal of achieving even longer 500 °C operation.  

In summary, SiC MESFET electronics and packaging have demonstrated stable continuous 

electrical operation in a 500 °C oxidizing air ambient for over 2400 hours. Such electronic 

durability is sufficient for application to hot-section sensor signal conditioning electronics beneficial 

to turbine engine ground-testing. 
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Fig. 6. Amplifer stage voltage gain vs. 

frequency for selected 500 °C electrical 

operating times up to 1300 hours. The 

amplifer was subjected to 656 hours of 

unbiased 500 °C heat soak prior to the 

electrical test. 
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